Topics in Learning Theory

Lecture 4: Binary Classification



Topics

e VC-dimension

— empirical L, generalization bound

— empirical Lo-cover and Rademacher bound
e Margin bounds

— Using L, covering number
— Simple data-dependent bounds
— (Using Rademacher complexity: next time)



Binary-Classification Problem

Predict binary label y € {#1}.

Classifier f(x):
— binary valued: f(x) € {1}

Classification error loss: ¢(f(x),y) = I(f(X) #Y)

— [ : indicator function.



Binary Linear Classifier

Letz € R, take H = {f(X) =2I1(wTX +b>0)—1:w € R%,bc R}

Empirical risk minimization (minimize classification error)

UAJ,[A?: min I(( wh X; +0)Y; <0
| | wERd bERZ )

What is the performance of this algorithm?

What is the performance of empirical risk minimization with general function
class ‘H?



Covering number for binary functions

e Given a function family H of f(x) that takes {0,1} values, what is its
empirical L., covering number?

Loo(H,0,150) = {lo(f(X1), Y1),...,6(f(X5), Yo)] - [ € H}|.

e Partial answer, a binary-valued family H has a unique number called VC-
dimension VC(H).

— if this number is finite, then the covering number is polynomial in n
— if this number is infinite, then there exists a distribution such that the

empirical covering number is 2".



VC dimension

e Shattering: a function class H is said to shatter a set of data points
(X1, Xo,...,X,) if, for all assignments of labels to those points (Y71, ...,Y,),
there exists a f such that the model f makes no errors when evaluating that
set of data points: f(X;) =Y; for all .

— Any label can be explained
— Complete overfitting

e VC dimension VC('H): the maximum n such that there exist data point of
cardinality »n that can be shattered.



Example: linear separator in 2d

In 2d:

— data = € R?
- H={wlz+b:we R*bc R}

There exists 3 points [0, 0], [0, 1], [1, 0] that can be shattered by H
N

Any four points cannot be shattered: \

So VC dimension is 3

More generally: d dimensional linear classifier has VC dimension d + 1



VC dimension and covering number

If VC dimension is infinity, then for any n, there is a sample of size n such
that one can fit any data — no generalization

What about finite VC dimension = VC(H)?

Sauer's Lemma (n > d):

(H,0[S,) <Z<>_ (en/d)?.

Empirical L, cover bound (can bound Rademacher complexity): there exists
constant C' > 0 such that

No(H, €|S,) < C (1/€)”



Generalization Bound using VC dimension: Rademacher
complexity bound

e Rademacher complexity (using L,-covering number and chaining bound):
exists constant C

R(H|S,) < C+v/d/n
e Generalization bound:
1 In(1/n)
) <— :
EX Y¢ _nz:: C d/n+ 277,

e Draw-back: does not give O(1/n) rate



Generalization Bound using L..-cover bound

Learning bound using empirical L., covering number: let Q(f) be a function
depending on f (its complexity), we want to prove an inequality with

probability 1 — »:

sup [Ex yo(f(X),Y) — = 3 6(£(X:), ¥:) — Q(f)] <0,

n
JeH i=1

where given )\ > 0, we take Q(f) of the form
Q) = 2(6* ~ A~ DEG(F(X), ¥) +  In(Noo (K, 0[20) /m)}/

Derivation (let Noo(H,0|n) = supg, Noo(H,0[55)):



Plsup [Ex yo(f( - _Z o(f —Q(f)] = 0]

feH
SESn sup eAn[EX,YqS( (X)ay)_ﬁ Zizl d(f(X5),Y;)—Q(f)]
feHr

<ES S! sup eAZz 1[¢(f(X ) Y) d(f(X;),Y:)]—=AnQ(f)
feH
Noo(H,0[2n) sup Eg, s € A [6(f (X)), Y) = (f(X4), Yi)]=AnQ(f)

feH

Noo(H, 0]2n) sup €€ =A=DVar((f(XD¥])=6(F(X1),Y1) =AnQ(#)
feH

Noo(H, 0[2n) sup e2(€"—A=DES(f(X).Y)=AnQ(/)
feH
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Bounds for empirical risk minimization using VC dimension

e In N (H,012n) < dIn(2en/d) (d = VC(H))

e Taking A < 0.5, and note (e* — A — 1)/)? is increasing function, we have

(1—120)Ex yo(f ) < — Z o(f %hl(Noo(Hv 0[2n)/n)

thus Exyo(f(X),Y) < HERS 6(f(X,),Y:) + 22In(Nu(H,0[2n) /),
which implies

A
By é(f(X),Y) <~ Zcb YD)+ 22 In(Noo (W, 0[20) /).
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Generalization Bounds for Binary Linear Classifier

e z € R linear classifier 2I(w"z +b > 0) — 1:

W, b = arg  min I(w'X; +b)Y; <0
[ ] wERdbERZ )

e VC dimensionis d + 1, thus 3C > 0:

ExyI(w'X +bY <0) I((w"X; +b)Y; <0
x,y I ((w” X + Z + )+ -

ExyI(w'X +b)Y <0) < %i:]((wTXi +b)Y; <0)+ C+/d/n.

1=1

Cdlnn
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Comments on VC dimension

e For d dimensional linear classifier, requires n > €)(d) examples.

— not suitable for large dimensional data where n < d.

e Characterizes worst case performance bounds:

— performance can be much better in reality if the distribution is not worst-
case

e How to characterize good distribution?

— in particular, how to handle large dimension
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Margin: are all linear separator equally good?
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Margin Bound

Let f(x) € H be a real valued function

— e.g. linear function: f(z) = wTz (x € R%)

To bound Ex y I(f(X)Y <0)intermof 1 -7 I(f(X,)Y; <7)

— ~ > 0Is margin

Want a bound of the form:

ExyI(f(X)Y <0) %Z

)Y <v) +Q(f).
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Margin Bound using L_..-cover bound

e Let Q(f) be a function depending on f (its complexity). Given A > 0 and
a = 2(e — X — 1)/, we want to prove an inequality with probability 1 —

sup((1 - a)Ex y I(F(X)Y < ——fo ~QUf)] <0,

fer

where we take Q(f) of the form

Q) = 3 I(Noo(H,7/2120) /).

Derivation (let Noo(H,7v/2|n) = supg, Noo(H,v/2|Sn)):
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Plsup[(1 — )ExyI(f(X)Y <0) - —ZI (f(X)Yi <) = Q(f)] = 0

fer

<FEg, supe
S

An[(1—a)Ex vy I(f(X)Y <0)—% 301 I(f(X:)Yi<y)—Q(f)]

<Eg, g sup e Ziml(1= )l (FXDVIO— I (X)Yi<m)]-AnQ()

fer

<n.

on) sup Es, g > Simald- ) I(FXDY! <9/2)=1(F(X)Yi</2)] -MnQ(f)
fer

o) sup e M@ (Var((F(X)Y <y/2) = BI(f(X)Y £9/2)~Q(f)
feH
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Margin Bounds for empirical risk minimization

Given any fixed A and ~, with probability 1 — , we have the following bound
for all f € H:

In(Noo (H,7/2|21)/7)

ExyI(f(X)Y <0) < A1 —a)n ’

where a = 2(e* = A — 1)/ \.
e Problem: margin needs to be known a priori

e Solution: sample dependent bound (adaptive to margin)
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Data dependent bound

Let j = 1,... and a sequence of v; > 75 --- (for example, v, = 1/27), then
the following margin bound holds with probability 1 — n,; where n; =n/j(j + 1):

BxyI(f(X)Y <0) < 5= ZI )+ ln(Noo(A%zjglsn)/m),

where a = 2(exp(A) — A —1)/\.

Take union bound over j. We have a unified statement that holds over all
4. Given any fixed X\ with probability 1 — n, we have the following bound for all
feHandallj=1,...:

Bxy/(/(X)Y €0) € = ZI < )+ 2T L2 + D
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We can take v; = A/277 1.

Now given v € (0, A], we take j = |log,(A/v)| + 1, then v; € [y/2,~]. The
above inequality holds for v, implies that with probability 1 — n, the following
holds for all v € (0, A] and f € H:

> (XY )

(1 —a)n =

N In(N(H,~/2|2n)/n) + 21In([logy(A/v)] + 2)
A1 —a)n '

ExyvI(f(X)Y <0)<

We may adapt to A in a similar matter by taking A; = j/n.
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Data-dependent Rademacher Complexity Bound

If ¢ € [0,1], then McDiarmid implies that Rademacher complexity
concentrates: with probability 1 — n

Es, R(6(H)[Sn) < R(¢(H)|Sn) + /In(1/n)/(2n)

Combine with Rademacher complexity bound, we obtain the following data
dependent learning bound: with probability 1 — n

Exyo(f ) < = Zcb Yi) 4+ 2R(¢(H)[Sn) + 3+/In(2/n)/(2n).
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